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ABSTRACT 

Analysis of Unconventional Oil and Gas Impacts on Downstream Fish Assemblages and 

Physiological Stress 

 

Joshua Ankeny 

 

Unconventional Oil and Gas (UOG) production has been steadily expanding throughout 
the mid-Atlantic since 2008. Increased sedimentation, degraded water chemistry and an overall 
decrease in habitat quality due to UOG is anticipated to negatively impact aquatic inhabitants, a 
common observation in other stressed landscapes (i.e., mining, agriculture, development). We 
assessed stream health through both community analysis and physiological parameters (i.e., 
growth and hematocrit). A before-after-control-impact study uncovered three fish metrics that 
were significantly different following UOG disturbances. The invertivore-piscivore metric 
decreased following UOG disturbance (p = 0.045) whereas two benthic metrics saw a surprising 
increase (p = 0.003 and p = 0.011). Further analysis revealed that fish communities are 
becoming more uniform as tolerant taxa proliferate through the chronically degraded systems. 
An ANCOVA alongside a linear mixed effect model failed to find a significant difference between 
the weight and length of Semotilus atromaculatus residing in both treatment conditions. S. 
atromaculatus were tested for hematological responses within eleven UOG impacted sites and 
eight reference sites with a linear mixed effect model. Hematocrit levels were found to be 
significantly lower in S. atromaculatus residing within UOG impacted streams (p = 0.029). A 
weak negative correlation (r = -0.397) suggests that as UOG well density increases, resident 
fish health decreases. Our findings indicate that in systems chronically impaired by 
anthropogenic stressors, physiological health indicators may provide better insight than 
community analyses. Additionally, we predict that the steady expansion of horizontal wells could 
lead to an overall degradation of resident fish populations as they exhibit degraded health. Our 
findings have potential to shape management practices and establish UOG protocols that 
protect aquatic environment.
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CHAPTER 1: LITERATURE REVIEW OF THE ENVIRONMENTAL IMPACTS OF UOG 

INTRODUCTION 

Shale gas production through means of unconventional oil and gas (UOG) is a rapidly 

growing industry in the United States. Starting in the early 2000s, the oil and gas industry 

employed some 225,000 employees or more, and spiked to nearly 450,000 employees in 2011 

(Brown et al. 2013). Previously, natural gas trapped in these underground shale reserves was 

both hard to reach and hard to extract. Now, with further technological advances and an 

increasing drive to find the next new energy source, the potential benefit outweighs the 

previously prohibitive costs of operation. It is projected that shale gas will account for 46% of all 

natural gas production in the US, up from the 14% in 2009 (Rahm and Riha 2012). 

A large contributor to this increase in oil and gas extraction is the ability to extract from 

the Marcellus formation, which extends from southwestern New York through eastern Ohio, and 

includes much of Pennsylvania and portions of West Virginia (King n.d.). As of 2011, the Energy 

Information Administration calculated that the Marcellus formation would produce around 141 

trillion cubic feet of natural gas. In 2015, the operating wells were averaging a total output of 

14.4 billion cubic feet per day. This natural gas was an astonishing 36% of the total natural gas 

used in the United States for that year (King n.d.). In the state of West Virginia alone, there has 

been nearly a 40-fold increase in UOG wells since 2007. 

 

Pathways of Impact: 

With a rapid spike in a field that is so minimally explored, a major concern is how UOG 

impacts downstream freshwater ecosystems. A previous study by Weltman-Fahs (2013) 

described three primary pathways through which UOG can impact freshwater environments, 

including; (1) increased sedimentation linked to deforestation and runoff from impermeable 
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surfaces including but not limited to well pads and roadways; (2) the leaching of chemicals into 

both surface and ground waters through spills and leaks that occur during the fracturing 

process; and (3) the rapid withdrawal or dispersal of water associated with the UOG causing a 

hydrological change in the waterway (Weltman-Fahs and Taylor 2013a). 

The first of pathway of impact is sedimentation. An increase in sedimentation directly 

increases the nitrogen and phosphorus levels of the stream. With increased nitrogen and 

phosphorus levels, eutrophication occurs more readily (Entrekin et al. 2011). Williams et al. 

goes on to say that increased sedimentation can lead to decreased channel depths resulting in 

habitat change, and furthermore, a decrease in the recreational use of the waterway (Williams 

et al. 2008). This sedimentation caused by UOG can be a factor of two activities; deforestation 

and the development of impermeable surfaces. Drilling for UOG requires the construction of a 

well pad and, as with other construction jobs, deforestation is immanent. Essentially, through 

the deforestation of an area you are removing what keeps the soil immobilized. With this 

removed, any rain will easily wash the now mobilized sediment into the adjacent stream. A well-

established mountain stream derives a large proportion of its energy from the leaf litter of the 

surrounding vegetation. If an area is deforested, this leaf litter no longer exists. Decreased 

canopy cover allows for more sunlight to reach the surface water resulting in an increase in 

temperature and an increased abundance of photosynthesizing plants and algae. With this 

change the stream now has an autochthonous energy base, something more similar to streams 

of larger width (Stone and Wallace 1998). 

Access roads to the well pads are another UOG feature that are deleterious to 

surrounding ecosystems. This increase in impermeable surfaces leads to yet another source of 

sediment runoff, as well as a whole new problem; increased salinization of waterways. In a 2005 

study, it was determined that the increase in roadways and the use of deicing methods are 

leading to the salinization of freshwaters (Kaushal et al. 2005). In their study, they explain the 

ecological implications of such a phenomenon. An increase the salinity levels of surface waters 



www.manaraa.com

3 

can lead to a change in mortality and reproduction of aquatic organisms (Kaushal et al. 2005). A 

change in seasons, correlating with a natural change in surface water levels, can lead to 

fluctuation in the concentration of chloride in a stream. This fluctuation of chloride concentration 

can amplify the effects of the salinity change on organisms unable to regulate their osmotic 

potential of their cells within a short time frame (Kaushal et al. 2005). In a 2014 study, Kassotis 

et al. explained that chloride is only one of over 750 chemicals used in the shale gas extraction 

process. In this study, Kassotis primarily focused on endocrine disrupting chemicals. They found 

that all of 39 unique samples contained some form of endocrine disrupting chemicals (Kassotis 

et al. 2014). These chemicals have tremendous effects on the reproductive organs of the 

animals inhabiting the impacted stream. Another study, performed in 2017, explained how the 

presence of flowback and produced water in streams has a negative effect on rainbow trout gill 

morphology via oxidative stress (Blewett et al. 2017). 

These untreated fracturing fluids are finding their way into surface waters through 

multiple means. Accidental spills during the drilling process is the main pathway. Canada 

reported that 2,500 spills occurred over a seven year span. 113 of these spills were known to 

have entered freshwater bodies of water (Blewett et al. 2017). Another source of surface water 

contamination is the improper treatment of flowback. Flowback is the fluid slurry that “flows 

back” up the well after the initial fracturing process. This cocktail consisting of brine, heavy 

metals and nucleotides is then hauled to the treatment facilities where the intention is to treat it 

and disperse it into surface waters. A common problem is that flowback is high in chloride which 

proves hard to remove in treatment plants (Olmstead et al. 2013). Chloride is only one of the 

many hard to remove chemicals found in flowback that leads to the inadequate treatment of 

dispersed wastewater. 

Defects in well casings is yet another pathway for these chemical rich liquids to 

contaminate surface waters. After a well is drilled and before the fracking fluid is injected, a 

cement well casing is constructed. This casing is supposed to stop any contamination of 
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groundwater and support the well’s infrastructure. Though the intentions are good, there are 

recorded events of well casing failures that allow fracking fluid to leak into the surrounding 

groundwater and eventually the surface waters (Entrekin et al. 2011). 

The final of the three main impacts of UOG is the rapid withdrawal and dispersal of water 

used in the UOG fracturing process. Water is the primary carrier of the chemicals deep into the 

well. Many UOG sites operate on a multi-stage fracturing method resulting in an incredible need 

for easily accessible fresh water. According to Entrekin, each UOG well uses between 2-7 

million gallons of water (Entrekin et al. 2011) .To accumulate this much water, one of two things 

must occur. The oil and gas company either dams a waterway, or directly extracts the water 

from a nearby stream. Both scenarios negatively impact the stream. Both methods change the 

natural hydrology of the river. The damming of a stream creates a sediment sink for particles 

that would otherwise flow downstream. These pools can be lacking in aquatic life as the 

substrate becomes uninhabitable and the flow decreases the amount of suspended food 

available to fishes. On the other hand, removing massive amounts of water from an active 

stream channel leads to inadequate dilution of chemicals, ultimately affecting the downstream 

biota (Wildi 2010). 

The lack of regulations on an UOG operation is becoming an increasingly apparent 

problem. As far as water withdrawal and dispersal are concerned, there is a lack of mandatory 

protocol. According to Rahm and Riha, there is no regulation on water withdrawal that takes into 

consideration the size and discharge of the used stream. They go on to say that there is no 

law stating where the used water must be returned to the stream from which it is extracted 

(Rahm and Riha 2012). The lack of regulation allows those 2-7 million gallons of water to be 

dispersed in a different location, leaving both the dispersal and extraction sites with altered 

hydrological regimes. A stream not equipped to handle an increased discharge of this 

magnitude could experience major geomorphological changes. These changes could result in a 

less diverse and less stable biotic community structure. 
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Rahm and Riha studied these withdrawal and dispersal effects on streams of different 

sizes and concluded with a simple strategy to mitigate harm to the waterways. They determined 

that the smaller the stream, the more monitoring of water withdrawal and dispersal should be 

used. Larger streams (> 1000 cfs) have the ability to lose and gain larger amounts of water 

without an impact on habitat and flow. Whereas, smaller streams (< 100 cfs) are prone to worse 

consequences (Rahm and Riha 2012). 

Consequential Effects on Communities: 

The three leading environmental impacts of UOG, sedimentation, chemical leaching, and 

hydrological changes, all have a direct impact on the organisms living within the impacted 

environment. Though not exactly the same, other land uses have been shown to have similar 

deleterious effects. A stream’s ecosystem consists of a multitude of flora and fauna, most of 

which are sensitive to the side effects of anthropogenic disturbances. 

Deforestation of land surrounding a stream for the construction of well pad and roads 

can lead to increased sedimentation within the stream. This sedimentation and reduced canopy 

cover results in an energy source change from allochthonous to autochthonous (Stone and 

Wallace 1998). With a new energy source and a change in the composition of the stream bed 

habitat, the organismal populations of the stream changes. This leads to a decrease in fish and 

invertebrate diversity between headwater streams and their downstream constituents (Stone 

and Wallace 1998).  

Impervious surfaces, such as those in residential developments, have been found to 

have deleterious effects on stream habitat, water quality and biotic structure (Walters et al. 

2001; Morse et al. 2003; Roy et al. 2003). Upon construction of impermeable surfaces, the 

turbidity of adjacent surface waters systems increased. Studies have shown that increased 

stream turbidity decreases the index of biological integrity (IBI) score for both 

macroinvertebrates (Morse et al. 2003; Roy et al. 2003) and fish (Meyer et al. 1999; Walters et 
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al. 2001). Morse et al. (2004) explained that increased development leads to degraded water 

chemistry through increased specific conductivity and TSS. Other studies have shown that 

residential development leads to degraded habitat conditions (Merriam et al. 2011).  We 

anticipate that the impervious surfaces constructed during UOG operations will mimic the effects 

of residential development. 

Johnson et al. (2017) explained that biofilms are subject to species change relatable to 

an anthropogenic change in land use (Johnson et al. 2017). Biofilms can contain a variance in 

species relative to the water quality. This feature allows for the identification of increased salts, 

increased acidity and even increased nitrates. Brittingham et al. proposed that this deforestation 

has an impact on the amphibians in the area as well (Brittingham et al. 2014). They determined 

that deforestation leads to habitat fragmentation and can change dispersal and breeding habits 

of frogs. 

 

Fish Communities as a Proxy for Stream Condition: 

 Before 1981, fish communities were rarely used as a metric to determine stream 

condition. In 1981 this changed when James R. Karr wrote a methods paper outlining the use of 

fish communities as a simplistic and inexpensive way of analyzing a stream (Karr 1981). Since 

then, his method has been used on both a national (Barbour et al. 1999, USEPA 2006) and 

local (McCormick et al. 2001) scale. Biotic indicators are superior to chemical or physical 

monitoring as they give a better picture of what is happening over a span of time (Fausch et al. 

1990). They explain that chemical or physical parameters are so complex that they rarely can 

predict the biological integrity of the system. Karr goes on to explain that fish are a better 

biological monitoring taxa than macroinvertebrates and diatoms due to their ease of sampling 

(i.e., less sorting, less identification training), our wealth of background knowledge and the 

ability to translate the results into a form easily understood by the general public.  
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 Fish IBI analysis, involves analysis of community, population and the individual organism 

(Karr 1981; Fausch et al. 1990). IBIs are specific to their geographic location and must be 

created before analyzing a given area. Anderson (2015) used data collected from statewide 

sampling events to create a West Virginia IBI (Anderson et al. 2015). Each individual species 

found in the studies were classified based on their life history traits (i.e., spawning, distribution, 

tolerance, trophic guild and family). Fish community samples from our study will look at the 

difference of these metrics between UOG impacted and reference conditions. In the case of a 

significant change in community structure, there is potential to advise environmental legislation 

(Karr 1990).  

  

Hematocrit as a Proxy for Fish Health: 

 Stress in an organism is can be caused by a variety events. Whatever the cause, the 

stress event leads to the creation of corticosteroids and catecholamines. These hormones then 

regulate secondary stress responses (i.e., compromised immune system, alteration of oxygen 

consumption [Schreck and Tort 2016]). Sopinka et al. (2016) outlines various methods that are 

used to measure these stress responses (Sopinka et al. 2016). They outline hematocrit as an 

indicator of stress response that requires a simple test using inexpensive equipment. 

 Hematocrit is the volume percentage of red blood cells found in the blood (Sopinka et al. 

2016). Typically, a baseline hematocrit value is obtained for a target species in a control setting. 

After this baseline value is determined, the fish is subjected to a stressor and the change in 

hematocrit is recorded. Depending on the stressor, the hematocrit can either increase or 

decrease. In events that require the subject to consume more energy (i.e., avoiding predators), 

the red blood cell count increases and subsequently the hematocrit value increases (Marshall et 

al. 2012). In stress events that involve exposure to heavy metals, pesticides and disease it is 

common to see a decrease in hematocrit as red blood cells are being destroyed and white blood 
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cell counts are increasing (Barnhorn 1996; Buthelezi et al. 2000; Nussey et al. 2006; Ghaffar et 

al. 2018). We expect to see a decrease in the hematocrit levels of fish residing in UOG 

impacted stream as they are potentially subject to decreased water quality including heavy 

metal exposure. 

OBJECTIVES 

 

The goal of this research project is to determine the effects of UOG on fisheries within 

West Virginia watersheds. Using both pre- and post- UOG development data, it is possible to 

directly test for UOG development impacts on fishes. To meet this goal, I addressed the 

following objectives: 

 

1. Quantify the effect of UOG development on fish assemblage structure 

2. Quantify the effect of UOG development on the physiological stress levels of 

resident Semotilus atromaculatus (creek chub) 
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CHAPTER 2: ANALYSIS OF UNCONVENTIONAL OIL AND GAS IMPACTS ON 

DOWNSTREAM FISH COMMUNITIES USING A BEFORE AFTER CONTROL IMPACT 

STUDY DESIGN 

Joshua N. Ankeny, J. Todd Petty, Eric R. Merriam, Quinton E. Phelps 

 

ABSTRACT 

 Since 2008, Unconventional Oil and Gas (UOG) production has been expanding 

throughout West Virginia’s portion of the Marcellus shale formation. An increase in UOG is 

expected to negatively impact headwater aquatic systems through increased sedimentation, 

degraded water chemistry, altered hydrologic regimes and an overall decrease in habitat quality. 

In this study, we utilized a before-after-control-impact study design in tandem with fish 

community metrics to quantify the effects of UOG on fish community metrics in 8 UOG impacted 

sites and 10 reference streams. A generalized linear mixed effect model revealed three metrics 

that had a significant interaction between treatment type (i.e., reference and UOG impacted) 

and sampling period (i.e., pre- or post-). Invertivores and Piscivores metrics were found to 

decrease following UOG events, whereas benthic metrics increased. Our findings suggest that 

community level analyses are not accurately assessing stream condition as fish communities 

are experiencing statewide degradation. An ANCOVA alongside a linear mixed effect model 

failed to find a significant difference between the weight and length of Semotilus atromaculatus 

residing in both treatment conditions. Our findings indicate that in systems chronically impaired 

by anthropogenic stressors, community analyses may not be capable of detecting a degraded 

ecosystems.  
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INTRODUCTION 

The deleterious effects of anthropogenic land uses on both biotic and abiotic aquatic 

factors have been extensively studied. Researchers have explored the effects of mining (Freund 

and Petty 2007; Merriam et al. 2011; Merovich et al. 2013), agriculture (Cuffney et al. 2000; 

King et al. 2005), development (Morse et al. 2003; Merriam et al. 2011) and various 

combinations of land uses (Merovich and Petty 2007; Merriam et al. 2015). However extensive 

the research, there is a lurking concern for the potential impacts of new understudied land uses. 

This research focuses on the rapid expansion of Unconventional Oil and Gas (UOG) exploration 

in the Marcellus shale formation. The Marcellus shale play, spanning across much of the 

Appalachian Basin, has seen a rapid uptick in UOG activity following new technological 

advances in 2008 (Rahm and Riha 2012; Brown et al. 2013). In 2007 there were 62 drilled UOG 

wells throughout the state of West Virginia. As of 2017, this number has increased to 2382. 

Unconventional Oil and Gas is aptly referred to as horizontal drilling or hydraulic 

fracturing. The hydrocarbons targeted with this approach lie deep within horizontal shale 

formations that are relatively thin but very wide. To extract hydrocarbons from these formations, 

wells are drilled between 1500 and 3000 meters deep. Once the shale formation is breached, 

the drill is turned parallel to the earth’s surface and a hole is drilled horizontally through the 

shale. A slurry of fracking fluid consisting of water, chemicals, biocides and proppants are 

forced in the well under extreme pressure. This process fractures the shale formation and props 

it open as to stimulate the release of hydrocarbons (EPA, 2018). 

Unconventional Oil and Gas, like other anthropogenic stressors (i.e., mining, agriculture, 

development), has deleterious effects on the surrounding watershed (Morse et al. 2003; 

Merriam et al. 2011). Deforestation for the purpose of well pad construction, road construction 

and pipeline corridor clearing lead to sedimentation of surrounding surface waters and habitat 

fragmentation (Stone and Wallace 1998; Weltman-Fahs and Taylor 2013b; Brittingham et al. 

2014). The cracking of well casings, the spilling of brine solutions and the improper treatment of 
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fracturing fluids have all lead to recorded contamination events in surface water systems 

(Brittingham et al. 2014; Shrestha et al. 2017). In the Marcellus shale formation, each UOG well 

requires 7.5 - 26.5 million liters of water during the fracturing process (Entrekin et al. 2011). 

Extracting this much water from headwater systems can be detrimental to the hydrologic regime 

(Rahm and Riha 2012). 

In the early 1980s, two innovative stream assessment protocols were created: The Index 

of Biological Integrity (IBI) and the Index of Well Being (IWB) (Gammon 1980; Karr 1981). 

These protocols analyzed fish community metrics to determine the health of aquatic 

ecosystems, a method rarely used before their time (Gammon 1980; Karr 1981). Since their 

creation, the IBI and IWB have been extensively studied and used at both the national (Barbour 

et al. 1999) and local (McCormick et al. 2001) scales. Gagic et al. (Gagic et al. 2015) 

determined that trait-based community analyses provide better understanding of ecosystem 

functionality than taxonomic-based analyses. Gagic’s approach was used to construct the West 

Virginia IBI which included metrics based on spawning characteristics, trophic levels, taxonomic 

families and tolerance levels (Anderson et al. 2015). Alterations in fish metrics are commonly 

used to indicate changes in habitat quality, while consistent results can indicate a stable 

environment. Many past studies have used fish community analyses to determine the effects of 

an anthropogenic land use (Meyer et al. 1999; Walters et al. 2001). In addition to community 

level analyses, physiological parameters (i.e., weight and length regression, condition factor) of 

individual species are also commonly used to determine fish health as it relates to the 

surrounding environment (Peters 1983; Reiss 1989; Riedel et al. 2009). Decreased weight 

length regressions and condition factors imply a degree of malnourishment and degraded 

individual health (Williams 2000).  

In this study, we sampled 18 fish communities spread across the Monongahela River 

basin and the Ohio River basin of northwestern West Virginia (Figure 2). To our knowledge, this 

is the first study that utilizes a before-after-control-impact study design alongside fish community 
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metrics to assess watersheds impacted by UOG disturbance. Our research objectives include: 

(1) quantify changes in fish community metrics as a response to UOG development within the 

watershed; (2) analyze variations in weight (g) and length (mm, standard length) of Semotilus 

atromaculatus (creek chub) within both treatment conditions.  

 

METHODS 

Study Area: 

 The Marcellus shale formation lies underneath six US states: West Virginia (21.33%), 

Pennsylvania (35.35%), New York (20.06%), Ohio (18.19%), Virginia (3.85%), Maryland 

(1.09%). Of the 245,771km2 that the Marcellus shale covers, only 27,510km2 are leased by oil 

and gas companies for UOG extraction (U.S. Energy Information Administration, 2011). Both 

the Monongahela River Basin and the Ohio River basin, analyzed in this study, fall completely 

within the range of the Marcellus shale play (Figure 2). The Monongahela River basin covers 

6800km2 of north central West Virginia and is predominately forested (75%) land. Agriculture 

(14%) development (5%) and mining (4%) are the primary land use stressors in the 

Monongahela River basin. The Ohio river basin covers 9600km2 of northwestern West Virginia 

and is predominantly forested (82%) land. Agriculture (10%) is the primary land use stressor in 

the Ohio River basin. 

Site Selection: 

 Data provided by the West Virginia Department of Environmental Protection (WVDEP) 

and West Virginia Division of Natural Resources (WVDNR) was used to select sampling events 

that predated UOG activity. Eighteen sites throughout both the Ohio River basin and the 

Monongahela River basin were selected for resampling based on presence or absence of UOG, 

watershed land use attributes, sampling methods, and sampling date. Pre-UOG sites were 

mapped and joined to a National Land Cover Database (U.S. Geological Survey, 2014) land use 
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file. Sites were removed from selection if they contained any upstream mining disturbance, 

upstream agriculture disturbance greater than 20%, upstream development disturbance greater 

than 2.5% or did not use backpack electrofishing as the sampling method. Detailed polygons of 

UOG well pads were overlaid on the land use map. From the sites that did not contain UOG 

disturbance within their watersheds, ten sites of least disturbance (Stoddard et al. 2006), 

henceforth referred to as reference, were selected. Eight impacted sites were selected based on 

the presence of UOG disturbance within their watersheds and a sampling date prior to the spud 

date of all upstream wells. All mapping was performed in version 10.3 ArcGIS software 

(Environmental Systems Research Institute [ESRI] 2005). 

Fish Community: 

 All collection methods followed the single pass backpack electrofishing protocol outlined 

in the WVDEP Fish Collection Protocol (WVDEP, 2011). Samples were collected between June 

and October in 2017 and 2018. Sampling events corresponded with stable flow conditions as to 

reduced turbidity and increase capture efficiency (Hense et al. 2010). Stream reaches were 

initiated at the coordinates provided from the agencies who performed the pre-UOG sampling. If 

reach lengths were not provided, it was calculated as 40 times the average wetted width for a 

minimum of 160 meters and a maximum of 300 meters, as to follow WVDEP standard operating 

procedures. Table 10 of the WVDEP Fish Collection Protocol (WVDEP, 2011) was used to 

determine the number of electrofishing units and netters to use based on stream width and 

depth. Smith-Root Model 24LR backpack electrofishing units (Vancouver, Washington) were 

used alongside ¼” mesh nets (Freund and Petty 2007). As sampling progressed through the 

reach, debilitated fish were netted and placed in live wells. Upon completion of the reach, fishes 

were identified to the species level, weighed (nearest 0.01g) and measured (nearest mm, 

standard length). Fish that were not able to be identified in the field were immediately 
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euthanized in 95% ethanol and identified in the lab. Fish identified in the lab were not weighed 

as preservation in 95% ethanol significantly reduces fish weight (Shields and Carlson 1997).  

Physical and Chemical Parameters: 

 To assess habitat quality, we performed U.S. Environmental Protection Agency (EPA) 

rapid visual habitat assessments (RVHA) at each site (Barbour et al. 1999). Using RVHA, 

various physiological parameters were assessed to give the site a score (maximum possible 

RVHA = 200).  

 In situ water parameters in tandem with lab analyses were used to assess water quality. 

A YSI 650 equipped with a 600XL sonde was used to measure dissolved O2 (mg/L), pH, 

temperature (C), and specific conductivity (μS/cm) (Yellow Springs Instruments, Yellow Springs, 

OH, USA). A single filtered sample was obtained using a Nalgene ® filtration device with a 0.45 

μm mixed cellulose-ester membrane filter. This sample was used to measure Al, Ca, Fe, Mg, 

Mn, K, Na, Sr, Zn (EPA method 200.7) as well as Ba, Cd, Cr, Ni and Se. (EPA method 200.8). 

Three unfiltered samples were obtained and used to measure Br-, Cl-, SO4
2- (EPA method 

300.0), NO2
-, NO3

- (EPA method SM4110B-2000), total P (EPA method SM4500-P BE-1999), 

total dissolved solids (EPA method SM2540 C-1997), total and bicarbonate alkalinity (EPA 

method SM2320 B-1997). The samples were stored at 4℃ until they were analyzed at Research 

Environmental and Industrial Consultants Inc. (Beaver, WV, USA). 

 

Statistical Analysis: 

 

Fish community response to UOG development: 

 The first objective set forward in this study was to assess changes in fish community 

metrics as a response to UOG development within the watershed. Initially, raw counts as well as 

relative abundances were calculated for multiple functional groups derived from Anderson’s 

dissertation (Anderson et al. 2015). Of the 65 metrics outlined in Anderson’s doctoral 
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dissertation, 51 were selected for analysis based on expected response to UOG disturbance. 

Eleven of the 51 metrics were removed as more than ⅓ of the samples contained zero 

detections (Stoddard et al. 2008). The resulting 40 functional groups used for this study are 

outlined in Table 1 along with their expected response to UOG. Statistical analysis was 

performed in R statistical software version 3.4.1 (R Core Team, 2017). A significance level 𝛼 = 

0.05 was predetermined for this study. All functional groups were tested for normality using Q-Q 

plots.  

Normally distributed data was analyzed with a generalized linear mixed effects model 

with a poisson distribution and sample site as a random effect. Total fish caught per sampling 

event was used as an offset when determining relative abundances. If the original poisson 

generalized linear mixed effects model showed overdispersion a negative binomial model was 

substituted. Homogeneity of variance was tested for using the Brown-Forsythe test. For each 

metric containing a significant interaction between treatment type (i.e., reference or impacted) 

and sampling period (i.e., pre- or post-) a post hoc Tukey test was ran using a Dunn-Sidak 

adjustment to correct for experiment-wide errors. Generalized linear mixed effects models were 

used to assess the abundances of individual fishes comprising each community metric that was 

found to be statistically significant.  

 The BACI model tested in this study was, γijk= μ + τi + ρj + τρij + ωik + εijk, where γ is the 

community metric, τ is the treatment effect (i.e., impact or reference), ρ is the time aspect (i.e., 

pre- or post-), τρ is the interaction between treatment and time (i.e., pre-reference, post-

reference, pre-impact, post-impact), ω is the random site error, and ε is the random 

experimental error (McDonald et al. 2000). 

 

Weight and length response to UOG development: 

The weight (g) and standard length (mm) of 987 S. atromaculatus, spread across all 

sites and treatment types (i.e., reference and impacted), were recorded. Weight and lengths 
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were log transformed and an ANCOVA was used to compare the slopes of the weight-length 

regression between treatment types (Figure 3). A linear mixed effect model, with site as a 

random effect, was used to compare both the log weight and log length, independently of one 

another, between treatment types (Table 4; Figure 4).  

Allometry within treatment groups was tested for using the following equation: 

 

 W = 𝛼L𝛽              (Peters 1983; Reiss 1989; Riedel et al. 2009) 

 

In this equation, W is the log weight (g) of each specimen, L is the log length (mm) of each 

specimen, 𝛼 is the intercept and 𝛽 is the allometric parameter (Riedel et al. 2009; Ogle 2013). 

Fulton’s condition factor was calculated for each individual specimen using the following 

equation: 

 

 KTL = [(100,000)(W)] / L3                      (Ricker 1975) 

 

In this equation, K is the coefficient of condition, W is the weight (g) and L is the length (mm). A 

two-sample t-test was used to compare the means of the condition factors of each treatment 

type (Table 3).  

 

Water quality and habitat quality response to UOG development: 

 Water quality measurements were not available for the pre-Impacted and pre-Reference 

samples. Therefore, each water quality parameter as well as RVHA was compared between 

post- treatment conditions (i.e., post-Impacted and post-Reference) using two-sample t-tests 

(Table 6).  
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RESULTS 

Habitat and Water Quality: 

 Though insignificant (p = 0.377), mean rapid visual habitat assessment scores appeared 

to decrease in the presence of UOG. Two sample t-tests revealed six water quality parameters 

that were significantly different with regard to treatment type: Calcium (p = 0.003), Magnesium 

(p = 0.020), Strontium (p = 0.009), Conductivity (p = 0.003), TDS (p = 0.024) and Alkalinity (p = 

0.018). Remaining water quality parameters were not found to be significantly different between 

treatment conditions (p > 0.05 for all parameters [Table 6]). 

Community Metrics: 

 Of the 40 community metrics analyzed, three had a significant interaction between 

treatment (i.e., reference and impacted) and sampling period (i.e., pre- and post- [Table 2]). The 

invertivore and piscivore metric (IP) was significantly different when looking at raw count data, 

while the benthic (Benthic) and benthic minus white sucker (Benthic_CACO) were significantly 

different when comparing relative abundances of the metrics. The mean abundance of IP 

species decreased from 324.9±79.5 in pre-UOG impacted sites to 200.4±139.6 in post-UOG 

impacted sites. The mean relative abundance of species within the Benthic metric increased in 

relative abundance from 0.551±0.175 in pre-UOG impacted sites to 0.678±0.164 in post-UOG 

impacted sites. The mean relative abundance of species within the Benthic_CACO metric 

increased in relative abundance from 0.537±0.172 in pre-UOG impacted sites to 0.662±0.167 in 

post-UOG impacted sites (Table 2).   

 Redside dace (p < 0.001), rainbow darters (p = 0.026), johnny darters (p < 0.001), 

longear sunfish (p < 0.001), golden redhorse (p < 0.001) and mimic shiner (p < 0.001) are all 

intolerant or moderately tolerant species within the invertivore or piscivore trophic levels. These 

fish species decreased in abundance following UOG disturbances. Central stoneroller (p < 

0.001), mottled sculpin (p = 0.020), northern hogsucker (p = 0.007), logperch (p < 0.001) and 
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eastern blacknose dace (p < 0.001) are all moderately tolerant or tolerant benthic species. 

These species were found to increase following UOG disturbance. 

Size Metrics: 

 The ANCOVA for the weight-length regressions did not reveal any significant difference 

between treatment types (p = 0.536). Figure 3 the log transformed data weight and length data. 

The slopes are nearly indiscernible from one another implying that both populations are 

increasing in weight and length at a similar ratio. A linear mixed effect model comparing the 

length and weight independently failed to find a significant difference between treatment types 

(p > 0.05 for both metrics [Table 4; Figure 4]). 

 Treatment type was not found to be a significant predictor of allometric growth. Fish 

within both conditions were found to have negative allometric growth. Reference conditions had 

a 𝛽 of 2.82 ± 0.037, while Impacted conditions had a 𝛽 of 2.84 ± 0.044. Additionally, Fulton’s 

condition factor was not found to be significantly different between treatment types (p = 0.28, 

Table 3).  

DISCUSSION 

Fish Assemblages: 

Analysis of 18 fish communities revealed that three (Table 2) of our 40 metrics are 

statistically different with regard to the interaction between treatment type (i.e., impacted and 

reference) and sampling period (i.e., pre-UOG and post-UOG). The first of the three significant 

metrics is unique in that it represents two trophic levels, invertivores and piscivores (IP). Our 

study found that the IP metric is significantly lower in watersheds containing UOG (Table 2; 

Figure 5). Previous studies (McCormick et al. 2001) suggest that the IP metric is negatively 

correlated with increased turbidity, reduced canopy cover and degraded habitat quality, all of 

which are common in sites containing UOG disturbances (Entrekin et al. 2011; Weltman-Fahs 

and Taylor 2013a; Brittingham et al. 2014). Piscivores are typically visual predators and it has 
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been shown that increased turbidity reduces their foraging efficiency (Mazur and Beauchamp 

2003). One explanation for this decrease is optimal foraging theory which explains that as 

habitat quality decreases fishes move to a habitat patch that provides a better cost-benefit ratio 

(Aspey and Lustick 1983). Invertivores have been found to decrease in systems with increased 

sedimentation as macroinvertebrate composition shifts (Pirhalla 2004). A decrease in the 

abundances of intolerant and moderately tolerant invertivore-piscivore species (i.e., redside 

dace, rainbow darter, johnny darter, longear sunfish, golden redhorse, mimic shiner) is driving 

the decrease in the IP metric (Table 8). 

Additionally, our analyses determined that fishes comprising the Benthic and Benthic 

minus white sucker (Benthic_CACO) metrics increased in relative abundance following UOG 

development (Table 2; Figure 5). These findings disagree with other trait based indexes 

(Barbour et al. 1999; McCormick et al. 2001; Anderson et al. 2015) which predict that 

anthropogenic stressors associated with a decrease in benthic habitat (i.e., sedimentation or 

substrate composition) negatively impact metrics consisting of benthic species as they require 

clean substrate for habitat and spawning. Since increased stream sedimentation is one of the 

leading impacts of UOG (Weltman-Fahs and Taylor 2013b; Brittingham et al. 2014) we initially 

hypothesized a decline in these metrics. Our findings suggest that UOG sites are not 

experiencing increased sedimentation load. Comparison of RVHAs did not reveal significant 

degradation in habitat quality of UOG impacted sites (Table 6), implying that the evaluated 

parameters (i.e., embeddedness, substrate characterization, sediment deposition, etc) are 

uniform (Barbour et al. 1999) throughout treatment conditions. An increase in the abundances of 

tolerant and moderately tolerant benthic species (i.e., central stoneroller, mottled scuplin, 

northern hogsucker, logperch, eastern blacknose dace) is driving the increase in these benthic 

metrics (Table 8). We failed to find a significant increase in the Benthic metrics when we 

removed the tolerant species (Benthic2.DEP).  
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Our metrics were analyzed using both raw count data as well as relative abundance data 

utilizing total fish as an offset. Though both pre- and post- sampling methods followed the 

WVDEP Fish Collection Protocol (WVDEP 2018), we expected relative abundance data to have 

stronger results as it reduces differences associated with different collection crews. Additionally, 

it has been determined that both mean stream width and stream gradient are important factors 

in single-pass electrofishing efficiency (Hense et al. 2010). As these factors do not change 

within a site following UOG development, we can assume that they are not reducing detection 

efficiency. The Benthic and Benthic_CACO metrics were found to be statistically different when 

analyzing relative abundances while the IP metric was found to be statistically different only 

when analyzing raw data. 

Under ideal circumstance, both pre-impacted and pre-reference treatment conditions 

should be similar in habitat characteristics as all sites are of similar size, similar geographic 

location and have only UOG as the variable land use stressor. The remaining 37 metrics 

revealed no significant change following UOG development despite our initial hypotheses. This 

suggests that with a continual rise in anthropogenic disturbance throughout the state of West 

Virginia there is potential to reduce even the pristine headwater streams to degraded habitats 

through dispersal and mass effects (Leibold et al. 2004; Heino et al. 2015; Merriam and Petty 

2016). A decreased habitat quality of neighboring systems has been shown to reduce the 

functionality of isolated headwater streams within West Virginia (Merriam and Petty 2016). 

Though our site selection methods controlled for upstream land uses, we disregarded 

downstream impacts. The fourth principle of the riverscape-concept explains that “unintended 

consequences of habitat degradation will occur in all directions, including upstream” (Fausch et 

al. 2002). This statewide degradation could result in communities that are uniform between 

treatment and reference conditions, rendering community level analyses useless. 

It appears that reference and impacted sites are becoming more uniform which could 

result in an overall decrease in fish richness and an eventual extirpation of less tolerant species. 



www.manaraa.com

25 

Similar patterns have been recorded in macroinvertebrate communities within the mountaintop 

removal-valley fill mining region of West Virginia (Merriam and Petty 2016). We believe we are 

seeing a proliferation of tolerant taxa throughout the headwater streams of our study area 

predating even our pre-UOG samples. Continued UOG disturbance, in conjunction with other 

anthropogenic stressors, could result in overall degradation of West Virginia headwater streams 

to lower biological integrity classes (Karr 1981, 1990).  

Size Metrics: 

S. atromaculatus are a widely distributed species with a range that extends across much 

of eastern United States and southeastern Canada. Though S. atromaculatus are omnivorous 

they mainly feed on macroinvertebrates and other fishes (Nico and Fuller 2019). Metric 

construction for various IBIs has labeled S. atromaculatus as a tolerant species (McCormick et 

al. 2001; Anderson et al. 2015). These characteristics lend S. atromaculatus to being a good 

candidate for field studies as they are ubiquitous among West Virginia stream conditions. S. 

atromaculatus chub were selected for size analysis as they were detected in all 18 of sites at an 

average of 55 individuals per site (N = 987). 

An ANCOVA of the length-weight slope revealed that S. atromaculatus are increasing in 

size at similar ratios regardless of treatment condition (Figure 3). A linear mixed effects model 

failed to reveal a significant difference between weight and length (Table 4). Additionally, there 

is no difference in allometric growth or Fulton’s condition factor between treatment condition 

(Table 3). Weight and length characteristics are highly variable between season (Moutopoulos 

and Stergiou 2002). Our sampling period ranged from June to October. A different sampling 

approach where weight and length measurements are taken within the same season may reveal 

different results. 
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Management Potential:  

West Virginia has a long history of anthropogenic disturbance through mining, 

mountaintop removal, agriculture and development (Yarnell 1998). Moreover, legacy land uses 

that occurred prior to our pre- data could be determining community composition within these 

streams (Harding et al. 1998). These historic events make it nearly impossible to find a stream 

that is truly of the reference condition. For our study, we instead selected streams of the least 

disturbed condition (LDC [Stoddard et al. 2008]). Stoddard et al. (2008) labeled streams of least 

disturbed condition as those in the landscape that still have anthropogenic disturbance but on a 

lesser scale than the defined impacted sites. Both treatment conditions had agricultural 

disturbance (< 20%) and developmental disturbance (< 2.5%). Mining disturbances were 

controlled against as studies have shown that mining in West Virginia has deleterious effects on 

biological condition that can be long-lasting (Petty et al. 2010; Merriam et al. 2011 [Table 5]). 

Additionally, mining has been shown to affect surface waters to a greater extent in the presence 

of additional land use stressors (Merriam et al. 2015). The only significantly different 

anthropogenic land use stressor between treatment conditions was UOG (p < 0.001 [Table 5]). 

Management agencies should consider both the individual impact of UOG as well as the 

cumulative effects with other land use stressors. 

 Karr (1981; 1990) describes poor lotic habitats as those “dominated by omnivores, 

pollution-tolerant forms, and habitat generalists; growth rates and condition factors commonly 

depressed; hybrids and diseased fish often present.” As fish communities in these watersheds 

become increasingly degraded and dominated by tolerant taxa we begin to question if 

community level analysis is sufficient. If the cumulative effects of anthropogenic stressors result 

in predominantly streams of poor condition, IBI cannot be used to make informed management 

decisions. From our findings, we suggest that in chronically impaired systems the headwaters 

streams are threatened by downstream anthropogenic stress (Fausch et al. 2002). Therefore, a 
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significant change in community metrics will prove hard to detect as the communities within 

these ecosystems are at the lowest biotic integrity class.  

Conclusion: 

 In summary, analysis of fish community metrics determined that IP abundance 

decreased following UOG disturbance, indicating a reduction in optimal foraging conditions 

(Aspey and Lustick 1983; Mazur and Beauchamp 2003). Contrary to expectations (Karr 1981; 

McCormick et al. 2001; Anderson et al. 2015), we saw an increase in the relative abundance of 

fishes within the Benthic and Benthic minus white sucker metrics. Fish assemblage results 

suggest that community level analyses in watersheds with extensive anthropogenic stress, both 

current and legacy, may not provide an adequate measurement of an aquatic ecosystem’s 

health. We suggest that management agencies should conduct physiological studies as 

opposed to community studies to determine changes in resident fish health associated with 

landscape alterations (chapter 3 of this thesis). 
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FIGURES AND TABLES 

Figure 1: 

A time series depicting the expansion of UOG across the state of West Virginia. Each 

dot (●) represents a drilled UOG well. In 2007 there were 62 wells. In 2008 there were 314 

wells. In 2011 there were 1189 wells. In 2017 there were 2382 wells. Map created in ArcGIS 

version 10.3 (Environmental Systems Research Institute [ESRI] 2005).
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Table 1: 

All fish metrics analyzed in this study along with their predicted response to UOG. 

Metrics expected to decrease in abundance after UOG disturbance (-). Metrics expected to 

increase in abundance after UOG disturbance (+). Metrics and expected results were selected 

from a larger table found in Anderson, 2015. 

Metric Abbreviation Description Expected Response 

Game Classified game fish from WV DNR ̶ 

RGS Rock-gravel spawners ̶ 

GSS Gravel and sand spawners ̶ 

NGL Non-guarding lithophilic spawners ̶ 

MO Macro-omnivore ̶ 

IN Invertivore ̶ 

IP Invertivore-Piscivore ̶ 

ISEAT Invertivore-Piscivore minus S. atromaculatus ̶ 

Benthic Benthic species ̶ 

Benthic_CACO Benthic species minus C. commersonii ̶ 

Cyprinid Cyprinidae family ̶ 

Cyprinid_BNDSEAT Cyprinidae family minus R. atratulus and S. atromaculatus ̶ 

BND_CACO_SEAT Blacknose dace, white sucker and S. atromaculatus + 

OH Omnivore-Herbivore + 

OH_CAAN Omnivore-Herbivore minus C. anomalum + 

OH_CAAN_CACO Omnivore-Herbivore minus C. anomalum and C. commersonii + 

OH_NG Non-game omnivore-herbivore + 

IBenthicNG Benthic and non-game invertivore-piscivore ̶ 

INonGameNB Non-game and non-benthic invertivore-piscivore ̶ 

DMS Darters, madtoms and sculpins ̶ 

Percidae Percidae family ̶ 
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Centrachidae Centrarchidae family ̶ 

Catostomidae Catostomidae family ̶ 

CGS_RGS Clean gravel and rock gravel spawners ̶ 

Cavity Spawn Cavity spawners ̶ 

Fish2.DEP Total Fish minus tolerant ̶ 

RGS2.DEP Rock-gravel spawners minus tolerant species ̶ 

NGL2.DEP Non-guarding lithophilic spawners minus tolerant species ̶ 

IP2.DEP Invertivore-piscivore minus tolerant species ̶ 

Benthic2.DEP Benthic minus tolerant species ̶ 

Cyprinid2.DEP Cyprinidae family minus tolerant species ̶ 

Game2.DEP Game fish minus tolerant species ̶ 

Tol.DEP Tolerant species + 

Mod.DEP Moderately tolerant species ̶ 

Int.DEP Intolerant species ̶ 

Tol_Benthic.DEP Tolerant benthic species + 

Tol_Cyprinid.DEP Tolerant species in the Cyprinidae family + 

McC_CGS2.DEP Clean gravel spawners minus tolerant species ̶ 

CGS_RGS2.DEP Clean gravel and rock-gravel spawners minus tolerant species ̶ 

CavitySpawn2.DEP Cavity spawners minus tolerant species ̶ 
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Figure 2: 

8 impacted sites (★) and 10 reference sites (●) were sampled within both the 

Monongahela River drainage basin (light grey) and the Ohio River drainage basin (dark grey). 

Dashed polygon represents the Marcellus Shale formation. Map created in ArcGIS version 10.3 

(ESRI, 2005). 
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Table 2: 

The results from generalized linear mixed effects models comparing fish community 

metrics between treatment conditions (i.e., reference and impacted) and sampling period (i.e., 

pre- and post- UOG). 

Raw Counts 

Metrics Treatment Period Mean SD SE Grouping p value 

Invertivore -
Piscivore 

Reference 
Pre 248.2 166.5 52.66 AB 

0.045 
Post 300.9 110.1 34.81 AB 

Impacted 
Pre 324.9 79.50 28.11            B 

Post 200.4 139.6 49.37         A 

Relative Abundances 

Metrics Treatment Period Mean SD SE Grouping p value 

Benthic Species 
Reference 

Pre 0.698 0.137 0.043 AB 

0.003 
Post 0.677 0.146 0.046 AB 

Impacted 
Pre 0.551 0.175 0.062         A 
Post 0.678 0.164 0.058    B 

Benthic Species 
minus White 

Suckers 

Reference 
Pre 0.679 0.145 0.046 AB 

0.011 
Post 0.663 0.149 0.047 AB 

Impacted 
Pre 0.537 0.172 0.061         A 
Post 0.662 0.167 0.059    B 
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Figure 3: 

 Boxplots of significant metrics. p-value derived from generalized linear mixed effect 

models. White boxes represent reference conditions. Gray boxes represent impacted 

conditions. 
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Figure 4: 

Weight and length regression of Semotilus atromaculatus in both treatment conditions. 

Reference samples and fit are represented by hollow circles (ο) and a dashed line respectively. 

Impacted samples and fit are represented by solid circles (●) and a solid line respectively. 
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Table 3: 

Fulton’s condition factor for Semotilus atromaculatus in both treatment conditions. 

 Mean SD SE p value 

Reference 1.97 0.503 0.022 
0.28 

Impacted 2.01 0.398 0.019 
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Table 4: 

The results of a linear mixed effect model for standard length (mm) and weight (g) of 

Semotilus atromaculatus in both treatment conditions. 

 Treatment N Mean(±SD) p value 

Log Length (mm) 
Reference 537 1.77±0.19 

0.073 
Impacted 450 1.71±0.18 

Log Weight (g) 
Reference 537 0.595±0.54 

0.080 
Impacted 450 0.440±0.51 
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Figure 5: 

Boxplot of the log length and log weight of Semotilus atromaculatus in both treatment 

conditions. 
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Table 5: 

Comparison of watershed land uses between treatment types. Unconventional Oil and 

Gas was calculated as wells per upstream area. Other land uses were calculated as a percent 

of total upstream area. An asterisk (*) denotes statistically significant parameters. 

Watershed Land Uses Mean ± SD (%) P-Value 

 Reference Impacted  
Agriculture (%) 8.60 ± 5.90 7.42 ± 2.65      0.583 
Development (%) 0.65 ± 0.79 0.63 ± 0.46      0.955 
Forest Cover (%) 88.5 ± 7.04 90.1 ± 3.03      0.530 
Open Water (%) 0.058 ± 0.057 0.037 ± 0.032      0.356 
Roads (%) 1.80 ± 0.49 1.66 ± 0.74      0.650 
Herbaceous Wetlands (%) 0.030 ± 0.060 0.032 ± 0.045      0.907 
Woody Wetlands (%) 0 0.012 ± 0.035      0.351 
UOG (Wells/km2) 0 1.07 ± 0.65      0.003* 

Pre SMCRA Grass (%) 0.0032 ± 0.010 0      0.343 
Pre SMCRA Barren (%) 0 0      NA 
Pre SMCRA Forest (%) 0.0010 ± 0.0033 0      0.343 
Post SMCRA Grass (%) 0.075 ± 0.185 0      0.233 
Post SMCRA Barren (%) 0.014 ± 0.042 0      0.322 
Post SMCRA Forest (%) 0.172 ± 0.340 0.0010 ± 0.0019      0.147 
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Table 6: 

Comparison of water quality and habitat parameters between treatment types. An 

asterisk (*) denotes statistically significant parameters. All metrics are mg/L except for those 

specified. RVHA is a score ranging between 0 and 200. 

Parameters Mean ± SD P-Value 

 Reference Impacted  
Aluminum 0.021 ± 0.027 0.035 ± 0.045 0.450 
Calcium 17.82 ± 7.27 29.36 ± 6.73 0.003* 
Iron 0.098 ± 0.086 0.124 ± 0.074 0.498 
Magnesium 3.21 ± 1.67 5.02 ± 1.31 0.020* 
Manganese 0.026 ± 0.037 0.043 ± 0.061 0.488 
Potassium 1.77 ± 0.88 2.05 ± 0.56 0.437 
Sodium 6.55 ± 6.98 18.57 ± 22.1 0.176 
Strontium 0.071 ± 0.05 0.141 ± 0.05 0.009* 
Zinc 0.0029 ± 0.005 0.0039 ± 0.005 0.681 
Barium 0.056 ± 0.021 0.064 ± 0.017 0.344 
Bromide 0.006 ± 0.19 0.041 ± 0.047 0.078 
Chloride 4.63 ± 3.61 7.76 ± 4.13 0.113 
Sulfate 17.81 ± 20.7 15.25 ± 8.26 0.727 
Nitrate 0.382 ± 0.90 0.075±0.08 0.312 
Phosphorous 7.85 ± 0.41 7.96 ± 0.45 0.717 
pH 7.85 ± 0.41 7.99 ± 0.45 0.513 
Conductivity (μS/cm) 99.3 ± 64.5 214.3 ± 72.3 0.003* 
TDS 0.065 ± 0.042 0.139 ± 0.047 0.024* 
Dissolved Oxygen 11.05 ± 1.85 10.36 ± 2.61 0.540 
Alkalinity 51.4 ± 36.6 102.7 ± 42.8 0.018* 
RVHA 136.3 ± 25.96 126.3 ± 19.37 0.377 
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Table 7: 

All 50 species that occurred within samples were classified based on traits. Spawning habits are rock-gravel spawners (RG), gravel-

sand spawners (GS), non-guarding lithophils (NGL), cavity spawners (CAV), Lithophilic spawners in sand or rock (LSR) and clean 

gravel spawners (CGS). Trophic levels are invertivore-piscivore (IP), invertivore (IN), macro-omnivore (MO), and omnivore-herbivore 

(OH). Tolerance levels are intolerant (I), moderately tolerant (M), and tolerant (T). Other classifications included benthic species (B) 

and game species (G).  

Common Scientific Code Family Spawn Trophic Tol. Other 

Yellow Bullhead Ameiurus natalis AMNA Ictaluridae  MO, OH T B, G 

Brown Bullhead Ameiurus nebulosus AMNE Ictaluridae  MO, OH T B, G 

Rock bass Ambloplites rupestris AMRU Centrachidae  IP M B, G 

Central Stoneroller Campostoma anomalum CAAN Cyprinidae RG, CGS MO, OH T B 

River Carpsucker Carpiodes carpio CACA Catostomidae  MO, OH M B 

White Sucker Catostomus commersoni CACO Catostomidae GS, NGL MO, OH T B 

Southern Redbelly Dace Chrosomus erythrogaster PHER Cyprinidae  MO, OH M  

Redside Dace Clinostomus elongatus CLEL Cyprinidae RG IN, IP I  

Mottled Sculpin Cottus bairdii COBA Cottidae CAV IN, IP M B 

Spotfin Shiner Cyprinella spiloptera CYSP Cyprinidae CAV IN, IP T  

Muskellunge Esox masquinongy ESMA Esocidae  IP I G 
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Greenside Darter Etheostoma blennioides ETBL Percidae RG, NGL IN, IP I B 

Rainbow Darter Etheostoma caeruleum ETCA Percidae RG, CGS IN, IP M B 

Fantail Darter Etheostoma flabellare ETFL Percidae RG, CAV IN, IP M B 

Johnny Darter Etheostoma nigrum ETNI Percidae RG, CAV IN, IP M B 

Banded Darter Etheostoma zonale ETZO Percidae NGL IN, IP I B 

Northern Hogsucker Hypentelium nigricans HYNI Catostomidae RG, CGS, NGL IN, IP M B 

Channel Catfish Ictalurus punctatus ICPU Ictaluridae  MO, OH T B, G 

Least Brook Lamprey Lampetra aepyptera LAAE Petromyzontidae GS, CGS MO, OH I B 

Redbreast Sunfish Lepomis auritus LEAU Centrachidae GS IP M G 

Green Sunfish Lepomis cyanellus LECY Centrachidae  IP T G 

Pumpkinseed Lepomis gibbosus LEGI Centrachidae  IN, IP M  

Bluegill Lepomis macrochirus LEMA Centrachidae  IN, IP T G 

Longear Sunfish Lepomis megalotis LEME Centrachidae  IN, IP M G 

Striped Shiner Luxilus chrysocephalus LUCH Cyprinidae RG OH T  

Redfin Shiner Lythrurus umbratilis LYUM Cyprinidae  IN, IP T  

Smallmouth Bass Micropterus dolomieu MIDO Centrachidae  IP M G 

Spotted Sucker Minytrema melanops MIME Catostomidae RG, NGL OH M B 

Spotted Bass Micropterus punctulatus MIPU Centrachidae  IP M G 
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Largemouth Bass Micropterus salmoides MISA Centrachidae  IP M G 

Black Redhorse Moxostoma duquesni MODU Catostomidae RG, NGL IN, IP I B 

Golden Redhorse Moxostoma erythrurum MOER Catostomidae GS, CGS, NGL IN, IP I B 

Emerald Shiner Notropis atherinoides NOAT Cyprinidae  MO, OH M  

Silverjaw Minnow Notropis buccatus NOBU Cyprinidae GS, NGL IN, IP T  

Mountain Madtom Noturus eleutherus NOEL Ictaluridae CAV IN, IP I B 

Stonecat Noturus flavus NOFU Ictaluridae CAV IN, IP M B 

River Chub Nocomis micropogon NOMI Cyprinidae RG, CGS IN, IP M  

Brindled Madtom Naturus miurus NOMU Ictaluridae CAV IN, IP M B 

Silver Shiner Notropis photogenis NOPH Cyprinidae  IN, IP T  

Rosyface Shiner Notropis rubellus NORU Cyprinidae RG, NGL IN, IP I  

Sand Shiner Notropis stramineus NOST Cyprinidae LSR OH M  

Mimic Shiner Notropis volucellus NOVO Cyprinidae  IN, IP M  

Logperch Percina caprodes PECA Percidae GS, CGS IN, IP M B 

Blackside Darter Percina maculate PEMC Percidae GS, CGS IN, IP M B 

Trout-perch Percopsis omiscomaycus PEOM Percopsidea  IN, IP M B 

Bluntnose Minnow Pimephales notatus PINO Cyprinidae CAV MO, OH T  

Eastern Blacknose Dace Rhinichthys atratulus RHAT Cyprinidae GS, CGS MO, OH T B 
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Longnose Dace Rhinichthys cataractae RHCA Cyprinidae CGS IN, IP M B 

Brook Trout Salvelinus fontinalis SAFO Salmonidae CGS IP I G 

Creek Chub Semotilus atromaculatus SEAT Cyprinidae GS IP T  
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Table 8: 

Results of a generalized linear effects model comparing species within the Invertivore-Piscivore 

and Benthic metrics. Raw counts were used to determine mean and standard deviation for the 

Invertivore-Piscivore metric. Relative abundances were used to determine mean and standard 

deviation for the benthic metric. 

 

Invertivore–Piscivore Metric 

Species Period Mean (±SD) p value 

Redside Dace 
Pre 7.5±21.2 

<0.001 
Post 0.375±1.06 

Rainbow Darter 
Pre 22.75±27.07 

0.026 
Post 17.75±22.96 

Johnny Darter 
Pre 22.5±20.42 

<0.001 
Post 7.875±9.88 

Longear Sunfish 
Pre 5.125±12.9 

<0.001 
Post 0.625±1.41 

Golden Redhorse 
Pre 5.75±13.9 

<0.001 
Post 0.125±0.35 

Mimic Shiner 
Pre 10.875±22.28 

<0.001 
Post 2.5±5.24 

Benthic Metric 

Central Stoneroller 
Pre 0.345±0.264 

<0.001 
Post 0.40±0.234 

Mottled Sculpin 
Pre 0.011±0.038 

0.020 
Post 0.021±0.032 

Northern Hogsucker 
Pre 0.054±0.060 

0.007 
Post 0.062±0.060 

Logperch 
Pre 0.0008±0.002 

<0.001 
Post 0.0087±0.022 

Eastern Blacknose Dace 
Pre 0.072±0.071 

<0.001 
Post 0.123±0.172 
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CHAPTER 3: HEMATOCRIT AS A PREDICTOR OF SEMOTILUS ATROMACULATUS 

STRESS DERIVED FROM UNCONVENTIONAL OIL AND GAS DISTURBANCE 

Joshua N. Ankeny, J. Todd Petty, Kevin Eliason, Quinton E. Phelps, Eric R. Merriam 

 

ABSTRACT 

 Unconventional Oil and Gas (UOG) production has been steadily expanding throughout 

the mid-Atlantic since early 2008. Increased sedimentation, degraded water chemistry and an 

overall decrease in habitat quality due to UOG is anticipated to negatively impact aquatic 

inhabitants, a common observation in other stressed landscapes (i.e., mining, agriculture, 

development). We tested for differences in Semotilus atromaculatus hematological responses 

within eleven UOG impacted sites and eight reference sites with a linear mixed effect model. 

Treatment type was found to be a significant predictor of hematocrit levels in resident S. 

atromaculatus within UOG impacted streams (p = 0.029). With the findings outlined in this 

manuscript, we predict that the steady expansion of horizontal wells could lead to an overall 

degradation of resident fish populations as they become increasingly stressed. 
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INTRODUCTION 

 Headwater streams are an essential element of the holistic ecosystem as they provide 

resources through functions that cannot occur elsewhere. Headwater systems are the nexus 

between land and higher order streams. They transform allochthonous nutrients into fine 

particulate organic matter and dissolved organic matter that can be processed by downstream 

residents (Vannote et al. 1980; Cuffney et al. 2000).  They provide habitat, thermal refugia and 

spawning grounds to higher order residents (Curry et al. 1997; Power et al. 1999; Petty et al. 

2005; Meyer et al. 2007). These headwater streams are vital to the preservation of fish taxa and 

they are in jeopardy as they are highly susceptible to anthropogenic disturbances (Trexler et al. 

2014). 

Unconventional Oil and Gas (UOG), also known as hydraulic fracturing or horizontal 

drilling, has been rapidly increasing throughout North America since the early 2000s (Rahm and 

Riha 2012; Brown et al. 2013). UOG, like other land use stressors (i.e., mining, agriculture, 

development), has been shown to stress aquatic systems. UOG increases sediment load 

through the construction of impermeable surfaces (i.e., roadways, cement well pads) and the 

deforestation of pipeline corridors (Williams et al. 2008; Adams et al. 2011), leaches chemicals 

associated with the fracturing process into both surface and ground waters (Rahm and Riha 

2012) and alters the natural hydrologic regimes by means of rapid withdrawal or dispersal of 

water used in the fracturing process (Entrekin et al. 2011; Weltman-Fahs and Taylor 2013a).  

With a rapid spike in a field that is so minimally explored, a major concern is how UOG 

impacts receiving freshwater residents. Previous lab studies have analyzed alterations in 

various physiological functions of fishes after the introduction of UOG produced brines 

(Papoulias and Velasco 2013; Blewett et al. 2017). These studies have concluded that fishes 

exposed to UOG produced brines have damaged gill morphology and decreased organ 

function. Although these studies are integral, they do not take into account the flashy nature of 
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produced water spills, nor do they account for the natural fluctuation in flows that alter chemical 

concentrations. The only way to ensure that these parameters are accounted for is to study 

streams in situ.   

 In this study, we sampled wild populations of Semotilus atromaculatus with regard to 

their exposure to upstream UOG. We used hematocrit levels to compare fishes residing in 

impacted conditions to those residing in reference conditions. Hematocrit is the volume ratio of 

packed red blood cells in a given blood sample and can be used as a stress indicator for fishes 

(Sopinka et al. 2016). Studies have shown that hematocrit levels have the potential to decrease 

in fish exposed to heavy metals as erythrocyte production is inhibited (Wepener et al. 1992; 

Buthelezi et al. 2000; Nussey et al. 2006). The same is true for fish exposed to synthetic 

chemicals commonly found in anthropogenically stressed landscapes (Ghaffar et al. 2016, 

2018; Qureshi et al. 2016). For the first time, this study showed a decrease in the hematocrit 

levels of fishes residing in systems impacted by UOG. 

 

METHODS 

Site Selection:  

Sites were selected with regard to their exposure to upstream UOG, watershed land use 

attributes (i.e., mining, development, agriculture), watershed size and sampling date. Using 

version 10.3 ArcGIS software (Environmental Systems Research Institute [ESRI] 2005), UOG 

well pad polygons were overlaid on an accumulation land use file. Eight reference sites were 

selected by the following criteria: there were no upstream mining impacts, sites had an 

upstream agricultural disturbance less than 17%, an upstream developmental disturbance less 

than 2.5%, and no UOG well pads within their watershed. Eleven impacted sites were selected 

if they had UOG well pads with one or more active wells within their watersheds, had no 

upstream mining impacts, an upstream agricultural disturbance less than 17%, an upstream 
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developmental disturbance less than 2.5% and had a sampling date prior to the spud date of the 

UOG operation. Land cover values were accumulated from the 2011 edition of the National 

Land Cover Database (U.S. Geological Survey, 2014).   

 

Fish and Blood Sampling: 

 Approximately thirty S. atromaculatus were sampled at each site using singlepass 

backpack electrofishing techniques outlined in the WVDEP Fish Collection Protocols (WVDEP, 

2011). Smith-Root Model 24LR backpack electrofishers (Vancouver, WA, USA) were used 

alongside ¼” mesh nets. Table 10 of the WVDEP Fish and Collection Protocol was used to 

determine how many electrofishers and netters to use (WVDEP, 2011). Debilitated fish were 

immediately euthanized and a single blood sample from the caudal artery was collected in a 

70μL heparinized glass microhematocrit capillary tube and sealed with Sigillum Wax (LW 

Scientific, Lawrenceville, Georgia). Upon collection of the blood sample, the specimen and 

corresponding blood sample were placed in a Whirl-Pak bag (Nasco, Fork Atkinson, Wisconsin) 

and placed on ice. Once in the lab, the blood samples were centrifuged using a CritSpin 

Microhematocrit Centrifuge Model M961 (IRIS International, Chatsworth, Los Angeles, 

California). The centrifuged samples were read using the Digital Reader (IRIS International, 

Chatsworth, Los Angeles, CA, USA). Samples too small to read in the Digital Reader were read 

with a microscope. 

 

Physical and Chemical Parameters:  

To assess habitat quality, we performed U.S. Environmental Protection Agency (EPA) 

rapid visual habitat assessments (RVHA) at each site (Barbour et al. 1999). Using RVHA, 

various physiological parameters were assessed to give the site a score (maximum possible 

RVHA = 200). 
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A YSI 650 equipped with a 600XL sonde was used to measure dissolved O2, pH, 

temperature, total dissolved solids, and specific conductivity (Yellow Springs Instruments, 

Yellow Springs, OH, USA). A single filtered sample was obtained using a Nalgene ® filtration 

device with a 0.45 μm mixed cellulose-ester membrane filter. This sample was used to measure 

Al, Ca, Fe, Mg, Mn, K, Na, Sr, Zn (EPA method 200.7) as well as Ba, Cd, Cr, Ni and Se. (EPA 

method 200.8). Three unfiltered samples were obtained and used to measure Br-, Cl-, SO4
2- 

(EPA method 300.0), NO2
-, NO3

- (EPA method SM4110B-2000), total P (EPA method SM4500-

P BE-1999), total dissolved solids (EPA method SM2540 C-1997), total and bicarbonate 

alkalinity (EPA method SM2320 B-1997). The samples were stored at 4℃ until they were 

analyzed at Research Environmental and Industrial Consultants Inc. (Beaver, WV, USA). 

 

Statistical Analysis: 

 The goal of this study was to determine if hematocrit levels of Semotilus atromaculatus 

inhabiting reference streams were significantly different than those of individuals inhabiting 

impacted streams. Hematocrit results were tested for normality using a Q-Q plot. We used a 

linear mixed effects model, with sampling site as a random effect, to analyze the raw hematocrit 

data. A two-sample Kolmogorov-Smirnov test was used to compare the cumulative frequency 

distributions of hematocrit for both reference and impacted treatments. A two-sample t-test was 

used to compare land use attributes between reference and impacted sites. Land use attributes 

were selected based on their likelihood to impact aquatic habitats. All statistical analyses were 

performed in R 3.4.1 (R Core Team). The significance level (⍺) used for this study was 0.05. 

Two-sample t-tests were used to compare water quality parameters and RVHA between 

treatment conditions (Table 2). 

 



www.manaraa.com

56 

RESULTS 

Hematocrit:  

Blood samples were taken from 200 specimens within eight reference sites and 269 

specimens within eleven UOG impacted sites. Hematocrit levels from these blood samples were 

recorded. A linear mixed effects model, with sampling site as a random effect, revealed that 

hematocrit levels are significantly lower in S. atromaculatus residing within UOG impacted 

systems (p = 0.029). Compared to reference conditions (51.95 ± 12.5), hematocrit levels 

decreased significantly in impacted sites (47.20 ± 14.3). A cumulative frequency plot of the 

hematocrit results supports this finding (Figure 1). A two-sample Kolmogorov-Smirnov test was 

used to compare frequency distributions within both treatment conditions (p < 0.001 [Figure 1]). 

Comparison of upstream well density to average hematocrit levels revealed a slightly negative 

correlation, though insignificant (r = -0.397, p = 0.092 [Figure 2]). 

 

Water Chemistry: 

Analysis of land uses as a percent of watershed area determined that only UOG was 

significantly different (p < 0.001) between impacted and reference sites. Upstream agriculture, 

development, forest cover, open water, roads, wetlands and mine lands were not significantly 

different between treatment types (p > 0.05 for all parameters [Table 1]). Water chemistry 

values differed significantly in calcium (p = 0.005), strontium (p = 0.040) and TDS (p = 0.049) 

between treatment types. All three parameters were higher in UOG impacted systems (Table 2).  

DISCUSSION 

 As we advance and progress as a civilization, it is critical to ensure that our exploitation 

of oil and gas reserves does not result in diminished ecosystems. Our technological advances 

allow for the extraction of hydrocarbons that were previously inaccessible. Consequently, the 

environmental side effects of these extraction methods are understudied. In the present study, 
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we explored the negative environmental impacts of UOG (i.e., sedimentation, chemical 

leaching, alterations of the hydrological regime [Weltman-Fahs and Taylor 2013]) and studied 

their hematological effect on resident Semotilus atromaculatus. Blood samples were taken from 

individuals residing in aquatic systems downstream of UOG operations as well as reference 

conditions. These blood samples were used to determine hematocrit levels, a common stress 

level indicator (Sopinka et al. 2016). Other studies have performed lab experiments that subject 

specimen to UOG produced waters and surrogates (Papoulias and Velasco 2013; Blewett et al. 

2017; He et al. 2017). To our knowledge this is the first study that analyzes hematological 

responses to UOG disturbance in situ.  

Land use stressors (i.e., agriculture, mining, development, UOG) have been known to 

degrade receiving aquatic systems (Cuffney et al. 2000; Fitzpatrick et al. 2004; Merriam et al. 

2011; Weltman-Fahs and Taylor 2013a). Because of these underlying effects, our site selection 

methods controlled for UOG as the only significantly different land use attribute between 

treatment types (p, 0.001 [Table 2]). Other land uses of concern for this study were agriculture, 

development, forest cover, open water, roads, wetland, and both pre- and post- SMCRA mine 

lands. 

When exploring the water chemistry data, we did observe significantly higher strontium 

between our sites. This could indicate a long-term impact of UOG development in the watershed 

as high strontium levels have been found in produced waters (Cozzarelli et al. 2017; Geeza et 

al. 2018). Although strontium appeared significant within the UOG impacted systems, other 

water parameters (i.e., magnesium, conductivity, bromide and barium) which have been found 

to be positively correlated with UOG activity did not stand out (Cozzarelli et al. 2017; Austin et 

al. 2018; Keller et al. 2018). The flashy nature of produced water spills and leaching suggests 

that the chemicals are readily diluted and transported downstream. From the water quality data 

we collected, we can argue that single sample water chemistry analysis at baseflow is not an 

effective way to measure UOG’s impact on stream chemistry.  
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Compared to control sites, hematocrit levels significantly decreased in UOG impacted 

specimens (p < 0.001 [Table 1]). Hematocrit decrease after exposure to pollutants agrees with 

the finding of other aquatic studies. Wepener et al. (1992) determined that the presence of 

chromium in aquatic systems has the potential to decrease hematocrit levels (Wepener et al. 

1992). A similar response was seen with copper exposure (Nussey et al. 2006), manganese 

exposure (Barnhorn 1996), arsenic exposure (Ghaffar et al. 2016) and exposure to pesticides 

(Qureshi et al. 2016; Ghaffar et al. 2018). In these studies, as well as the present study, it is 

assumed that exposure to chemical pollutants (i.e. strontium and calcium) and degraded water 

quality (i.e., TDS) result in either an inhibition of erythrocyte formation or hemolysis. Both 

physiological responses contribute to reduced red blood cell counts and decreased hematocrit 

levels. 

In Figure 2, we compared the average hematocrit levels to the density of UOG wells 

within the watershed (wells/km2) at the site level. A negative correlation (r = -0.397) revealed 

that as upstream well density increased the health of resident Semotilus atromaculatus 

decreased. This finding could aid the Department of Environmental Protection (DEP) in making 

better informed decisions regarding the permitting of UOG wells. With future studies to support 

our finding, there is potential to create permitting restrictions that take into account the density of 

UOG wells within a given watershed.  

 The methods outlined in this study provide a fast and cost-effective way to analyze the 

effects of land use stressors on aquatic systems. Previous study methods require either a large 

team of technicians (i.e., fish community analyses), an intricate knowledge of invertebrate 

species (i.e., aquatic macroinvertebrate studies), access to laboratory space or access to 

expensive equipment (i.e., water chemistry analyses). The present study requires the following: 

a small team of technicians, the ability to identify the target species and access to inexpensive 

microhematocrit sampling equipment. 
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CONCLUSION 

 In the Ohio and Monongahela River Basins of northern West Virginia, an area known for 

its anthropogenically stressed landscape, we discovered that UOG is negatively impacting the 

health of resident Semotilus atromaculatus. When compared to reference conditions, fish 

residing in UOG impacted systems had significantly lower hematocrit levels. Previous studies 

have attributed this decrease in hematocrit levels to hemolysis or hindered erythrocyte 

production. Consequently, as UOG is the only significantly different land use between treatment 

types, we are confident in suggesting that an increase in sedimentation and chemical leaching 

associated with UOG operations is responsible for the decreased health of the inhabitants. 
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FIGURES AND TABLES 

Figure 1: 

 A cumulative frequency plot of hematocrit data. The dark gray bars represent the 

frequency of hematocrit values for the impacted sites while the light gray bars represent the 

control sites. The solid line represents to the percentage frequency for the impacted sites while 

the dashed line represents the reference sites. p = significance factor, NR = number of reference 

samples, NI = number of impacted samples 
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Figure 2: 

The relationship between upstream UOG density (wells/km2) and average hematocrit 

levels. The points represent individual sites. The dotted line represents the best fit line. 
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Table 1: 

Comparison of watershed land uses between treatment types. Unconventional Oil and 

Gas was calculated as wells per upstream area. Other land uses were calculated as a percent 

of total upstream area. An asterisk (*) denotes statistically significant parameters. 

Watershed Land Uses Average Area ± SD (km2) P-Value 

 Reference Impacted  
Agriculture (%) 7.88 ± 5.04 8.72 ± 3.17      0.685 
Development (%) 0.74 ± 0.86 0.57 ± 0.39      0.611 
Forest Cover (%) 89.1 ± 6.55 88.8 ± 3.56      0.927 
Open Water (%) 0.050 ± 0.059 0.060 ± 0.080      0.758 
Roads (%) 1.86 ± 0.51 1.71 ± 0.66      0.605 
Herbaceous Wetlands (%) 0.016 ± 0.040 0.028 ± 0.046      0.543 
Woody Wetlands (%) 0 0.0008 ± 0.002      0.249 
UOG (Wells/km2) 0 1.03 ± 0.66   < 0.001* 

Pre SMCRA Grass (%) 0 0      NA 
Pre SMCRA Barren (%) 0 0      NA 
Pre SMCRA Forest (%) 0 0      NA 
Post SMCRA Grass (%) 0.094 ± 0.21 0      0.238 
Post SMCRA Barren (%) 0.018 ± 0.047 0      0.329 
Post SMCRA Forest (%) 0.21 ± 0.37 0.0003 ± 0.0009      0.148 
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Figure 3:  

11 impacted sites (★) and 8 reference sites (●) were sampled within both the 

Monongahela River drainage basin (light grey) and the Ohio River drainage basin (dark grey). 

Dashed polygon represents the Marcellus shale formation. Map created in ArcGIS version 10.3 

(ESRI, 2005). 
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Table 2: 

Comparison of water quality and habitat parameters between treatment types. An 

asterisk (*) denotes statistically significant parameters. All metrics are mg/L except for those 

specified. RVHA is a score ranging between 0 and 200. 

Parameters Mean ± SD P-Value 

 Reference Impacted  
Aluminum 0.024 ± 0.030 0.045 ± 0.050 0.300 
Calcium 19.55 ± 6.73 30.44 ± 7.11 0.005* 
Iron 0.109 ± 0.092 0.120 ± 0.073 0.804 
Magnesium 3.56 ± 1.66 5.06 ± 1.40 0.065 
Manganese 0.030 ± 0.040 0.043 ± 0.059 0.616 
Potassium 1.81 ± 0.88 1.92 ± 0.42 0.767 
Sodium 7.44 ± 7.56 16.16 ± 20.10 0.253 
Strontium 0.080 ± 0.047 0.148 ± 0.074 0.040* 
Zinc 0.003 ± 0.005 0.006 ± 0.013 0.509 
Barium 0.058 ± 0.022 0.062 ± 0.018 0.747 
Bromide 0.008 ± 0.021 0.131 ± 0.299 0.251 
Chloride 4.85 ± 3.82 15.53 ± 24.98 0.240 
Sulfate 20.49 ± 22.53 13.15 ± 7.30 0.403 
Nitrate 0.473 ± 1.00 0.078 ± 0.077 0.302 
Phosphorous 0.01 ± 0.013 0.007 ± 0.007 0.535 
pH 7.97 ± 1.12 8.03 ± 0.324 0.881 
Conductivity (μS/cm) 157.88 ± 83.63 223.78 ± 107.12 0.176 
TDS 99.5 ± 39.89 162.1 ± 74.45 0.049* 
Dissolved Oxygen 7.22 ± 1.90 8.28 ± 2.39 0.356 
Alkalinity 56.94 ± 38.76 90.59 ± 33.31 0.077 
RVHA 127.38 ± 18.85 129.14 ± 21.07 0.868 
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